## Nucleic Acid Related Compounds. 105. Synthesis of 2',3'-Didehydro-2',3'-dideoxynucleosides from Ribonucleoside Cyclic 2',3'-(Sulfates or Phosphates) or 2',3'-Dimesylates via **Reductive Elimination with Sodium Naphthalenide**<sup>1</sup>

Morris J. Robins,\* Elzbieta Lewandowska,<sup>†</sup> and Stanislaw F. Wnuk<sup>†,‡</sup>

Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700

Received May 28, 1998

Treatment of purine ribonucleosides with thionyl fluoride resulted in formation of cyclic 2',3'-sulfite esters. Acetylation of the 5'-hydroxy group and Sharpless oxidation (NaIO<sub>4</sub>/RuCl<sub>3</sub>) gave the cyclic 2',3'-sulfate ester derivatives. Treatment of 5'-O-silyl-protected ribonucleosides with thionyl chloride followed by oxidation gave an alternative route to the cyclic 2',3'-sulfates. Reductive elimination with sodium naphthalenide (THF/-50 °C) gave the 2',3'-unsaturated nucleosides. Parallel treatment of adenosine cyclic 2',3'-phosphate gave the 2',3'-olefin. The adenine, hypoxanthine, and 2-amino-6-methoxypurine 2',3'-didehydro-2',3'-dideoxynucleosides were prepared efficiently (40-60% overall yields of crystalline, analytically pure products; 3-5 steps, some combined into one-flask procedures) by treatment of 5'-O-protected 2',3'-di-O-mesylribonucleosides with sodium naphthalenide. Reactions were performed at or below ambient temperature with readily available reagents and standard laboratory conditions.

## Introduction

Various 2',3'-dideoxy- and 2',3'-didehydro-2',3'-dideoxynucleosides inhibit replication of human immunodeficiency viruses (HIV), and some have become therapeutic agents for the treatment of AIDS.<sup>2</sup> Their inhibition of replication of hepatitis B viruses (HBV) also has been demonstrated.<sup>3</sup> Chemistry and activity associated with dideoxynucleosides have been reviewed.<sup>4-6</sup> Methods for the synthesis of 2'.3'-didehvdro-2'.3'-dideoxynucleosides from ribonucleosides include Corey-Winter treatment of cyclic 2',3'-thionocarbonates,7,8 Barton-McCombie frag-

\* To whom correspondence should be addressed at Brigham Young University

(2) (a) Mitsuya, H.; Broder, S. *Proc. Natl. Acad. Sci. U.S.A.* **1986**, *83*, 1911. (b) Balzarini, J.; Kang, G.-J.; Dalal, M.; Herdewijn, P.; De Clercq, E.; Broder, S.; Johns, D. G. *Mol. Pharmacol.* **1987**, *32*, 162. (3) (a) Suzuki, S.; Lee, B.; Luo, W.; Tovell, D.; Robins, M. J.; Tyrrell,

D. L. J. Biochem. Biophys. Res. Commun. 1988, 156, 1144. (b) Lee, B.; Luo, W.; Suzuki, A.; Robins, M. J.; Tyrrell, D. L. J. Antimicrob. Agents Chemother. 1989, 33, 336. (c) Howe, A. Y. M.; Robins, M. J.; Wilson, J. S.; Tyrrell, D. L. J. Hepatology 1996, 23, 87. (d) Robins, M. J.; Wilson, J. S.; Madej, D.; Lindmark, R. J.; Wnuk, S. F.; Gati, W. P.; Tyrrell, D. L. J. Unpublished data.

(4) For comprehensive reviews, see: (a) Huryn, D. M.; Okabe, M. *Chem. Rev.* **1992**, *92*, 1745. (b) Herdewijn, P.; Balzarini, J.; De Clercq, E. Advances in Antiviral Drug Design; JAI Press: Greenwich, CT, 1993; Vol. 1, pp 233–318. (c) Wnuk, S. F. *Tetrahedron* **1993**, *49*, 9877.

(5) For recent reports, see: (a) Luzzio, F. A.; Menes, M. E. J. Org. (a) For recent reports, see: (a) Luzzio, F. A.; Menes, M. E. J. Org. Chem. **1994**, 59, 7267. (b) Clive, D. L. J.; Wickens, P. L.; Sgarbi, P. W. M. J. Org. Chem. **1996**, 61, 7426. (c) Clive, D. L. J.; Sgarbi, P. W. M.; Wickens, P. L. J. Org. Chem. **1997**, 62, 3751. (d) Antonov, K. V.; Konstantinova, I. D.; Miroshnikov, A. I. Nucleosides Nucleotides **1998**, 17, 153 and references therein.

17, 153 and references therein.
(6) (a) Robins, M. J.; Hansske, F.; Low, N. H.; Park. J. I. *Tetrahedron Lett.* **1984**, *25*, 367. (b) Robins, M. J.; Madej, D.; Low, N. H.; Hansske, F.; Zou, R. In *Nucleic Acid Chemistry. Improved and New Synthetic Procedures, Methods, and Techniques;* Townsend, L. B., Tipson, R. S., Eds.; Wiley: New York, 1991; Vol. 4, pp 211–219. (c) Robins, M. J.; Wilson, J. S.; Madej, D.; Low, N. H.; Hansske, F.; Wnuk, S. F. *J. Org. Chem.* **1995**, *60*, 7902 and references therein.

mentation of vicinal bis(xanthates),8 and reductive elimination (zinc-copper couple) of 2',3'-bromohydrin acetates.<sup>6</sup> Stereoselective coupling to give dideoxynucleosides from 2-phenylseleno sugars has been employed,<sup>9</sup> and coupling syntheses of L enantiomers are of recent interest because some have potent activity against HIV and HBV and lower toxicity to host cells.<sup>10</sup>

We considered that readily available<sup>11</sup> 2',3'-O-sulfinylnucleosides could serve as starting materials for 2',3'unsaturated nucleosides. Our preliminary studies indicated that 2',3'-sulfite esters failed to undergo reductive elimination to give 2',3'-didehydro-2',3'-dideoxynucleosides with several reagent systems. The more reactive cyclic 2',3'-sulfates,12 potentially available by Sharpless oxidation<sup>13</sup> of the sulfites, were then examined. During the course of this work, sugar cyclic sulfates<sup>14</sup> and 2',3'di-O-mesylnucleosides<sup>5b-d</sup> were reported to undergo reductive elimination with telluride dianions<sup>5b,14</sup> and lithium areneselenoates,<sup>5c</sup> and hydrogenolysis with palladium catalysts.<sup>5d</sup> Treatment of sugar cyclic sulfates with potassium selenocyanate followed by sodium borohydride also gave olefins.<sup>15</sup> We now report syntheses of purine

E.; Cheng, Y.-C. *J. Med. Chem.* **1994**, *37*, 798. (b) Bolon, P. J.; Wang, P.; Chu, C. K.; Gosselin, G.; Boudou, V.; Pierra, C.; Mathé, C.; Imbach, J.-L.; Faraj, A.; el Alaoui, A.; Sommadossi, J.-P.; Pai, S. B.; Zhu, Y.-L.; Lin, J.-S.; Cheng, Y.-C.; Shinazi, R. F. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1657. (c) Rassu, G.; Zanardi, F.; Battistini, L.; Gaetani, E.; Casiraghi, G. J. Med. Chem. 1997, 40, 168.

(11) Robins, M. J.; Hansske, F.; Wnuk, S. F.; Kanai, T. Can. J. Chem. 1991. 69. 1468.

 (12) (a) Berridge, M. S.; Franceschini, M. P.; Rosenfeld, E.; Tewson,
 T. J. J. Org. Chem. 1990, 55, 1211. (b) Lohray, B. B. Synthesis 1992, 1035

(13) Gao, Y.; Sharpless, K. B. *J. Am. Chem. Soc.* **1988**, *110*, 7538. (14) Chao, B.; McNulty, K. C.; Dittmer, D. C. *Tetrahedron Lett.* **1995**, 36. 7209.

Faculty leave from the Department of Chemistry, University of Agriculture, Poznan, Poland.

Present address: Department of Chemistry, Florida International University, Miami, FL 33199-0001.

<sup>(1)</sup> For Part 104, see: Maeba, I.; Morishita, N.; Francom, P.; Robins, M. J. J. Org. Chem., in press.

<sup>(7)</sup> Dudycz, L. W. Nucleosides Nucleotides 1989, 8, 35.

<sup>(8)</sup> Chu, C. K.; Bhadti, V. S.; Doboszewski, B.; Gu, Z. P.; Kosugi, Y.;

 <sup>(</sup>a) Chu, C. K., Bhauti, V. S., Doboszewski, B., Gu, Z. T., Rosugi, T.,
 Pullaiah, K. C.; Van Roey, P. V. J. Org. Chem. 1989, 54, 2217.
 (9) Beach, J. W.; Kim, H. O.; Jeong, L. S.; Nampalli, S.; Islam, Q.;
 Ahn, S. K.; Babu, J. R.; Chu, C. K. J. Org. Chem. 1992, 57, 3887.
 (10) (a) Lin, T.-S.; Luo, M.-Z.; Liu, M.-C.; Pai, S. B.; Dutschman, G.

2',3'-didehydro-2',3'-dideoxynucleosides via reductive elimination of cyclic 2',3'-(sulfate or phosphate) esters of ribonucleosides, or more efficiently (40-60% overall yields of analytically pure products) of 2',3'-di-O-mesyl derivatives, with sodium naphthalenide. All reactions are conducted at ambient or lower temperatures and utilize readily available reagents and standard laboratory conditions.

## **Results and Discussion**

We used 5'-chloro-5'-deoxy-2'.3'-O-sulfinyladenosine<sup>11</sup> in our initial studies. None of the reductive systems investigated caused significant 2',3' elimination. Sharpless oxidation<sup>13</sup> (NaIO<sub>4</sub>/RuCl<sub>3</sub>) gave 5'-chloro-5'-deoxy-2',3'-O-sulfonvladenosine (55%), although others had reported problems with this oxidation.<sup>5b</sup> Several reductive systems [e.g., Bu<sub>3</sub>SnH/AIBN,<sup>8</sup> Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>/viologen,<sup>16</sup> Zn-Cu couple/DMF,6 sodium naphthalenide,17,18 and lithium 4,4'-di-tert-butylbiphenyl<sup>19</sup>] failed to give 2',3'unsaturated products, produced uninviting mixtures, or both. The cyclic 2',3'-sulfate was refluxed with sodium iodide in acetone, and precipitation of the presumed 9-(5chloro-3,5-dideoxy-3-iodo- $\beta$ -D-xylofuranosyl)adenine 2'sulfate sodium salt ( $\sim$ 70%) occurred. This product was treated with Zn-Cu/DMF to give 5'-chloro-2',3'-didehydro-2',3',5'-trideoxyadenosine<sup>3d</sup> (48%).

Treatment of adenosine with SOCl<sub>2</sub><sup>11</sup> under modified conditions failed to effect selective introduction of the 2',3'-O-sulfinyl moiety without replacement of the 5'hydroxyl group by chloride, in contrast with pyrimidine nucleosides.<sup>11,20</sup> Treatment of adenosine (1a, Scheme 1) with the less reactive thionyl fluoride (generated in situ<sup>21</sup>) gave 2', 3'-O-sulfinyladenosine (**7a**, exo/endo ~2:1, 72%). Acetylation of **7a** and oxidation<sup>13</sup> of the resulting **4a** gave the cyclic 2',3'-sulfate 6a (67% from 7a), which was stable at  $\sim 4$  °C in the crystalline form for at least 1 year. However, it decomposed at elevated temperatures or in solution in DMSO. Of the reagents noted above, sodium naphthalenide<sup>17,18</sup> gave the best conversions of **6a** to 2',3'didehydro-2',3'-dideoxyadenosine (9a). Purification [Dowex  $(OH^{-})$  resin,  $H_2O$  and recrystallization gave **9a** (48%). The use of  $SOF_2$  allowed selective introduction of the 2',3'-O-sulfinyl function and subsequent acetylation of O5'.

Protection of O5' of adenosine (1a) with tert-butyldiphenylsilyl (TBDPS) chloride gave 2a. Treatment of 2a with SOCl<sub>2</sub>/MeCN gave the 2',3'-O-sulfinyl derivative 3a (63% from 1a). Oxidation of 3a gave the 2',3'-sulfate 5a (90%) which underwent smooth reductive elimination with sodium naphthalenide (-50 °C,  $\sim$ 10 min) to give 8a. Desilylation (TBAF/THF or NH<sub>4</sub>F/MeOH<sup>22</sup>) and purification [Dowex  $1 \times 2$  (OH<sup>-</sup>)] gave **9a** (54% from **5a**). The overall sequence  $(1a \rightarrow 9a, 63\%)$  was performed without isolation of intermediates (2a, 3a, 5a, 8a) with



<sup>a</sup> (a) TBDPSCl/pyridine; (b) SOCl<sub>2</sub>/MeCN; (c) NaIO<sub>4</sub>/RuCl<sub>3</sub>·3H<sub>2</sub>O/ MeCN/H<sub>2</sub>O; (d) [C<sub>10</sub>H<sub>8</sub>]•-Na<sup>+</sup>/THF/-50 °C; (e) TBAF/THF; (f) NH<sub>3</sub>/ MeOH; (g) SOF<sub>2</sub>/MeCN; (h) Ac<sub>2</sub>O/pyridine.

aqueous partition workups and final purification of 9a on Dowex (OH<sup>-</sup>) resin. This 5-step (some consecutive one-flask) sequence uses readily available reagents and mild conditions and is one of the most efficient methodologies for the synthesis of dideoxynucleosides.<sup>4–8</sup> In contrast, our exploratory reaction of 2',3'-sulfate 5a with sodium telluride<sup>14</sup> gave olefin **8a** in low yield (<20%). The presence of unresolved impurities in 2',3'-unsaturated nucleosides prepared by reductive eliminations with lithium telluride and lithium areneselenoates has been noted.<sup>5b,c</sup>

Other procedures for oxidation of cyclic sulfites to sulfates [e.g., KMnO<sub>4</sub>, Ca(MnO<sub>4</sub>)<sub>2</sub>]<sup>12</sup> gave lower yields. However, we developed one modification (Oxone/RuCl<sub>3</sub>) of the Sharpless oxidation<sup>13</sup> that gave **5a** (60%) from **3a**. Application of this cyclic sulfate methodology for the synthesis of pyrimidine 2',3'-unsaturated nucleosides has an inherent flaw: oxidation of 2',3'-O-sulfinyluridine<sup>11,20</sup> resulted in the formation of the 2,2'-anhydroarabino product (cyclonucleoside) via intramolecular displacement of sulfate from C2' by O2.

Our sequence was successful for the synthesis of the anti-HBV agent 2-amino-9-(2,3-dideoxy- $\beta$ -D-glycero-pentofuranosyl)-6-methoxypurine<sup>3d</sup> precursor **9b**. Guanosine was converted<sup>23</sup> into its 2-amino-6-methoxypurine analogue<sup>23a</sup> 1b. Silylation (O5') of 1b, treatment of 2b with  $SOCl_2$ , and oxidation of **3b** gave the 2',3'-sulfate **5b**. Treatment of 5b with sodium naphthalenide and deprotection of **8b** gave 2-amino-9-(2,3-dideoxy-β-D-glyceropent-2-enofuranosyl)-6-methoxypurine (9b; 20% from 1b with purification of intermediates). Treatment of 1b with SOF<sub>2</sub>, acetylation, oxidation, and reductive elimination

<sup>(15)</sup> Calvo-Flores, F. G.; Garcia-Mendoza, P.; Hernandez-Mateo, F.; Isac-Garcia, J.; Santoyo-González, F. J. Org. Chem. 1997, 62, 3944. (16) (a) Amino, Y.; Iwagami, H. Chem. Pharm. Bull. 1991, 39, 622.

<sup>(</sup>b) Park, K. K.; Lee, C. W.; Choi, S. Y. J. Chem. Soc., Perkin Trans. 1 1992. 601

<sup>(17) (</sup>a) Beels, C. M. D.; Coleman, M. J.; Taylor, R. J. K. Synlett 1990, 479. (b) Guijarro, D.; Mancheno, B.; Yus, M. Tetrahedron Lett. 1992, *33*, 5597.

<sup>(18) (</sup>a) Garst, J. F. Acc. Chem. Res. 1971, 4, 400. (b) Molander, G. A.; Harris, C. R. In Encyclopedia of Reagents for Organic Synthesis,

<sup>A., Harris, C. R. In Encyclopedia of Reagents for Organic Synthesis,
Paquette, L. A., Ed.; Wiley: New York, 1995; Vol. 7, pp 4602–4604.
(19) Rawson, D. J.; Meyers, A. I. Tetrahedron Lett. 1991, 32, 2095.
(20) Sowa, T.; Tsunoda, K. Bull. Chem. Soc. Jpn. 1975, 48, 505.
(21) Tullock, C. W.; Coffman, D. D. J. Org. Chem. 1960, 25, 2016.
(22) Zhang, W.; Robins, M. J. Tetrahedron Lett. 1992, 33, 1177.</sup> 

<sup>(23) (</sup>a) Gerster, J. F.; Jones, J. W.; Robins, R. K. J. Org. Chem. 1963, 28, 945. (b) Robins, M. J.; Uznanski, B. Can. J. Chem. 1981, 59, 2601.



 $^a$  (a) NaH/THF/EtOPOCl\_2; (b) [C\_{10}H\_8]^-Na^+/THF/-50 °C; (c) TBAF/THF.

 $(7b \rightarrow 4b \rightarrow 6b \rightarrow 9b)$  gave 9b [48%, after Dowex (OH<sup>-</sup>) purification].

We briefly explored the use of cyclic 2',3'-phosphates as substrates<sup>24</sup> for this sequence, but their preparation has been problematic.<sup>25–27</sup> Treatment of 5'-*O*-TBDPSadenosine (**2a**, Scheme 2) with NaH/THF and then ethyl dichlorophosphate generated triester **10**. Treatment of **10** with sodium naphthalenide, deprotection, and purification [Dowex (OH<sup>-</sup>)] gave 2',3'-didehydro-2',3'-dideoxyadenosine (**9a**; 27% from **2a**).

These reductive eliminations presumably involve single electron transfer (SET) from sodium naphthalenide to the sulfate or phosphate moieties,<sup>24</sup> followed by homolysis of the 2' or 3' carbon-oxygen bond. A second SET to the carbon radical would produce a carbanion with a good leaving group on the vicinal C2' or C3'. Departure of the 2'- or 3'-(sulfate or phosphate) would produce the olefin, and a similar mechanism has been suggested<sup>28a</sup> for the conversion of vicinal dimesylates into alkenes. The possibility of consecutive SET-mediated homolytic cleavage of each carbon-oxygen bond also was considered.<sup>24</sup> Treatment of vicinal dimesylates with sodium naphthalenide has been used for the synthesis of alkenes.<sup>18b,28</sup> However, analogous treatment of ditosylates gave diols,<sup>28a</sup> presumably via competitive sulfur-oxygen bond cleavage.<sup>29</sup> We recently noted efficient removal of O-tosyl groups from the sugar<sup>30,31</sup> and halogens from the heterocycle<sup>31</sup> of purine nucleosides with sodium naphthalenide.

Treatment of 5'-O-TBDPS-adenosine (**2a**) with methanesulfonyl chloride gave the crystalline vicinal dimesylate **11a** (67% from **1a**, Scheme 3). The 2',3'-unsaturated derivative **8a** was formed rapidly upon treatment of **11a** with sodium naphthalenide ( $\sim 5$  min, -50 °C). Deprotection of **8a** (TBAF) and purification [Dowex (OH<sup>-</sup>)] gave

(24) Marshall, J. A.; Lewellyn, M. E. J. Org. Chem. 1977, 42, 1311.
(25) (a) Holy, A.; Sorm, F. Collect. Czech. Chem. Commun. 1969, 34, 3383. (b) van Boom, J. H.; de Rooy, J. F. M.; Reese, C. B. J. Chem. Soc., Perkin Trans. 1 1973, 2513. (c) Shimidzu, T.; Yamana, K.; Kanda, N.; Kitagawa, S. Bull. Chem. Soc. Jpn. 1983, 56, 3483.

- N.; Kitagawa, S. Bull. Chem. Soc. Jpn. 1983, 56, 3483.
   (26) Hutchinson, D. W. In Chemistry of Nucleosides and Nucleotides; Townsend, L. B., Ed.; Plenum Press: New York, 1991; Vol. 2, pp 81– 160.
- (27) Chen, X.; Zhang, N.-J.; Li, Y.-M.; Jiang, Y.; Zhang, X.; Zhao, Y.-F. *Tetrahedron Lett.* **1997**, *38*, 1615.

(28) (a) Carnahan, J. C., Jr.; Closson, W. D. *Tetrahedron Lett.* 1972, 33, 3447. (b) Hrovat, D. A.; Miyake, F.; Trammell, G.; Gilbert, K. E.; Mitchell, J.; Clardy, J.; Borden, W. T. *J. Am. Chem. Soc.* 1987, 109, 5524.



<sup>*a*</sup> (a) TBDPSCl/pyridine; (b) MeSO<sub>2</sub>Cl/pyridine; (c) TsCl/pyridine; (d) [C<sub>10</sub>H<sub>8</sub>]•-Na<sup>+</sup>/THF/-50 °C; (e) TBAF/THF.

2',3'-didehydro-2',3'-dideoxyadenosine (**9a**, 79% from **11a**). This four-step procedure (**1a**  $\rightarrow$  **9a**, 43%) eliminates the Sharpless oxidation step<sup>13</sup> and uses no noxious<sup>5b,c,8</sup> reagents. The 2-amino-6-methoxypurine **9b** (55% from **2b**) and hypoxanthine **9c** (69% from **2c**) analogues were prepared analogously.

Mesylation of 5'-O-TBDPS-inosine (2c) gave a separable mixture of 5'-O-TBDPS-2',3'-di-O-mesylinosine (11c, 67%) and 5'-O-TBDPS-2',3',6-tri-O-mesylinosine (22%). Sulfonylation of O6 of guanosine analogues is wellknown.<sup>32</sup> Treatment of **11c** with sodium naphthalenide and desilylation of 8c gave 2',3'-didehydro-2',3'-dideoxyinosine (9c, 74% from 11c after chromatography and recrystallization). Analogous treatment of the crude mixture (**11c**/trimesylate,  $\sim$ 3:1) also gave clean **8c** (76%). Apparently, SET to the 6-O-mesyl group resulted in sulfur-oxygen bond cleavage owing to the higher energy of an aryl (sp<sup>2</sup>) radical (but the usual carbon-oxygen bond homolysis occurred at the sugar sp<sup>3</sup> carbon). Pyrimidine nucleoside 2',3'-dimesylate derivatives underwent SET also to the heterocyclic base.<sup>31</sup> Very slow addition of stoichiometric quantities of sodium naphthalenide produced uracil 2',3'-unsaturated nucleoside products, but <sup>1</sup>H NMR and HRMS peaks indicated the presence of 5,6-dihydrouracil byproducts.

Treatment of 2',3',5'-tri-*O*-mesyladenosine<sup>33</sup> (**12a**) with sodium naphthalenide (-50 °C) gave the 5'-*O*-mesyl olefin **14a** (63%). The desired **9a**, with a free 5'-hydroxyl group, was not detected. Excess sodium naphthalenide, longer reaction times, or higher temperatures ( $\sim$ -20 °C) resulted in loss of adenine. Because our mild conditions had converted 5'-*O*-tosyl- or 2',3',5'-tri-*O*-tosyladenosine into adenosine,<sup>31</sup> we prepared 2',3'-di-*O*-mesyl-5'-*O*-tosyladenosine (**13a**) from 5'-*O*-tosyladenosine.<sup>34</sup> As expected, treatment of **13a** under our standard conditions gave **9a** (55%). However, the preparation of **13a** involved separation of its 5'-*O*-tosyl precursor (42%) from a mixture of tosylates.<sup>34</sup>

<sup>(29) (</sup>a) Closson, W. D.; Wriede, P.; Bank, S. J. Am. Chem. Soc. 1966, 88, 1581. (b) Ganson, J. R.; Schulenberg, S.; Closson, W. D. Tetrahedron Lett. 1970, 4397. (c) Closson, W. D.; Ganson, J. R.; Rhee, S. W.; Quaal, K. S. J. Org. Chem. 1982, 47, 2476.

<sup>(32) (</sup>a) Daskalov, H. P.; Sekine, M.; Hata, T. Bull. Chem. Soc. Jpn. **1981**, 54, 3076. (b) Bridson, P. K.; Markiewicz, W. T.; Reese, C. B. J. Chem. Soc., Chem. Commun. **1977**, 791. (c) Stimac, A.; Muhic, D.; Kobe, J. Nucleosides Nucleotides **1994**, *13*, 625.
(33) Sasaki, T.; Minamoto, K.; Tanizawa, S. J. Org. Chem. **1973**,

<sup>(33)</sup> Sasaki, T.; Minamoto, K.; Tanizawa, S. J. Org. Chem. 1973, 38, 2896.

<sup>(34)</sup> Herdewijn, P. Tetrahedron 1989, 45, 6563.

|                                 |                                     |                                                                |                             |                                      | 1                          |                               |                    |                               |                                                 |                                            |
|---------------------------------|-------------------------------------|----------------------------------------------------------------|-----------------------------|--------------------------------------|----------------------------|-------------------------------|--------------------|-------------------------------|-------------------------------------------------|--------------------------------------------|
| compound                        | ${ m H1'^{c}}\left(J_{1'-2'} ight)$ | $\mathrm{H2}^{\prime d}\left(J_{2^{\prime}-3^{\prime}}\right)$ | $\mathrm{H3'}^d(J_{3'-4'})$ | ${ m H4'^{e}}\left( J_{4'-5'} ight)$ | ${ m H5'}^{d}(J_{5'-5''})$ | H5" <sup>d</sup> ( $J_{5"-4}$ | () H2 <sup>f</sup> | <b>H8</b> <sup><i>f</i></sup> | NH <sub>2</sub> <sup>g</sup> or NH <sup>g</sup> | others <sup>f</sup>                        |
| $\mathbf{2b}^h$                 | 5.84                                | $4.50^{i}$                                                     | $4.27^{i}$                  | 4.01-3.94 <sup>i</sup>               | 3.88                       | 3.73                          |                    | 7.99                          | 6.48                                            | 3.97 (OMe)                                 |
|                                 | (5.1)                               |                                                                |                             |                                      | (11.2)                     | (4.5)                         |                    |                               |                                                 |                                            |
| <b>3a</b> <sup>j,k</sup>        | 6.43                                | 6.35                                                           | 5.98                        | $4.41^{i}$                           | 3.                         | 85 <sup><i>i</i>,1</sup>      | 8.09               | 8.34                          | 7.42                                            |                                            |
|                                 | (2.5)                               | (6.1)                                                          | (4.0)                       |                                      |                            |                               |                    |                               |                                                 |                                            |
| 3b <sup><i>j</i>,<i>k</i></sup> | 6.35                                | $6.18^{i}$                                                     | $6.18^{i}$                  | 4.36 <sup>i</sup>                    | 3.                         | 86 <sup><i>i</i>,1</sup>      |                    | 8.06                          | 6.62                                            | 3.98 (OMe)                                 |
|                                 | (1.5)                               |                                                                |                             |                                      |                            |                               |                    |                               |                                                 |                                            |
| $4a^k$                          | 6.38 <sup>i</sup>                   | 6 38 <sup>i</sup>                                              | 5 95                        | 4 56                                 | 4                          | 26 <sup>i</sup>               | 8 21               | 8 35                          | 7 43                                            | 1 98 (Ac)                                  |
| Iu                              | 0.00                                | 0.00                                                           | (3.7)                       | (4, 1)                               | (12.1)                     | (6.0)                         | 0.21               | 0.00                          | 7.10                                            | 1.00 (110)                                 |
| <b>A</b> a <sup>m</sup>         | 6 62                                | 6 25                                                           | 5.82                        | (1.1)<br>1 81 <sup>i</sup>           | (12.1)                     | 26 <i>i</i>                   | 8 91               | 8 / 1                         | 7 13                                            | $1.08(\Lambda_{c})$                        |
| 4a                              | (2.0)                               | (7.5)                                                          | (4.0)                       | 4.01                                 | (19.1)                     | (6 0)                         | 0.21               | 0.41                          | 7.45                                            | 1.50 (AC)                                  |
|                                 | (3.0)                               | (7.3)                                                          | (4.0)                       | 4 401                                | (12.1)                     | (0.0)                         |                    | 0.05                          | 0.00                                            | 0.00(1.)                                   |
| 4D.                             | 0.33                                | 0.20                                                           | 0.20                        | 4.43                                 | 4.34                       | 4.17                          |                    | 8.05                          | 0.09                                            | 2.00(AC)                                   |
|                                 |                                     | 0.001                                                          | 0.001                       |                                      | (12.0)                     | (4.5)                         |                    | ~                             |                                                 | 3.98 (OMe)                                 |
| <b>4b</b> <sup>m</sup>          | 6.54                                | 6.081                                                          | 6.08 <sup>1</sup>           | 4.74                                 | 4.34                       | 4.17                          |                    | 8.11                          | 6.69                                            | 2.00(Ac)                                   |
|                                 | (1.6)                               |                                                                |                             |                                      | (12.0)                     | (4.5)                         |                    |                               |                                                 | 3.98 (OMe)                                 |
| 5a <sup>j</sup>                 | 6.64                                | 6.52                                                           | 6.08                        | $4.65^{i}$                           | 3.                         | 88 <sup><i>i</i>,1</sup>      | 8.04               | 8.33                          | 7.41                                            |                                            |
|                                 | (2.3)                               | (7.0)                                                          | (4.3)                       |                                      | (11.4)                     | (5.4)                         |                    |                               |                                                 |                                            |
| 5 <b>b</b> <sup>j</sup>         | 6.58                                | $6.40^{i}$                                                     | $6.40^{i}$                  | $4.62^{i}$                           | 3.                         | 85 <sup><i>i</i>,1</sup>      |                    | 8.03                          | 6.66                                            | 3.97 (OMe)                                 |
|                                 | (1.4)                               |                                                                |                             |                                      |                            |                               |                    |                               |                                                 |                                            |
| 6a                              | 6.63                                | 6.53                                                           | 6.11                        | $4.76^{i}$                           | 4.41                       | 4.22                          | 8.20               | 8.34                          | 7.47                                            | 1.96 (Ac)                                  |
|                                 | (2.8)                               | (7.0)                                                          | (4.0)                       |                                      | (12.0)                     | (6.2)                         |                    |                               |                                                 |                                            |
| 6b                              | $6.57^{f}$                          | $6 43^{i}$                                                     | $6 43^{i}$                  | 4 69 <sup>i</sup>                    | 4.36                       | 4 18                          |                    | 8 02                          | 6 75                                            | 2.00 (Ac)                                  |
|                                 | 0101                                | 0110                                                           | 0110                        | 1100                                 | (12.0)                     | (4 7)                         |                    | 0.02                          | 0110                                            | 3.98 (OMe)                                 |
| 7ak                             | 6 30 <i>i</i>                       | 6 25                                                           | 5.80                        | 1 38                                 | (12.0)                     | (1.7)<br>6Лі,l                | 8 1 9              | 8 38                          | 7 /3                                            | 5.00(0100)<br>5.11n(5.600H5')              |
| 7 a                             | 0.50                                | (5.7)                                                          | (2.0)                       | 4.50                                 | 5.                         | 04                            | 0.15               | 0.00                          | 7.45                                            | 5.41 (5.0, 0115)                           |
| <b>7</b> ~ m                    | 0 50                                | (3.7)                                                          | (3.0)                       | (4.0)                                | 0                          | e Ail                         | 0 10               | 0 40                          | 7 49                                            | 5 91 <i>n</i> (5 0 0 0 1 5 4)              |
| 7a                              | 0.38                                | (7.5)                                                          | 3.71                        | 4.38                                 | э.                         | 04'''                         | 8.19               | 8.43                          | 7.43                                            | 5.51" (5.6,° OH5 )                         |
|                                 | (3.4)                               | (7.5)                                                          | (3.7)                       | 1.001                                |                            | ooil                          |                    | 0.00                          | 0.04                                            |                                            |
| 7 <b>b</b> ^                    | $6.20^{4}$                          | $6.20^{7}$                                                     | 5.94                        | 4.28                                 | 3.                         | 631,1                         |                    | 8.08                          | 6.64                                            | 5.20 <sup>4</sup> (5.2, <sup>6</sup> OH5') |
|                                 |                                     |                                                                | (3.7)                       |                                      | _                          | / 1                           |                    |                               |                                                 | 3.97 (OMe)                                 |
| <b>7b</b> <sup>m</sup>          | 6.48                                | 6.07                                                           | 5.80                        | $4.55^{1}$                           | 3.                         | 63 <sup>1,1</sup>             |                    | 8.13                          | 6.64                                            | 5.20 <sup>n</sup> (5.2, <sup>o</sup> OH5') |
|                                 | (3.0)                               | (7.1)                                                          | (4.2)                       |                                      |                            |                               |                    |                               |                                                 | 3.97 (OMe)                                 |
| 8b <sup><i>j</i></sup>          | $6.82^{i}$                          | $6.21^{i}$                                                     | $6.51^{i,p}$                | $4.98^{i}$                           | 3.80                       | 3.73                          |                    | 7.71                          | $6.51^{p}$                                      | 3.98 (OMe)                                 |
|                                 |                                     |                                                                |                             |                                      | (12.0)                     | (4.5)                         |                    |                               |                                                 |                                            |
| 8c <sup>j</sup>                 | $6.95^{i}$                          | 6.24                                                           | 6.55                        | $5.04 - 5.10^{i}$                    | 3.84                       | 3.78                          | 7.87               | 8.05                          | 12.30                                           |                                            |
|                                 | (1.5)                               | (5.8)                                                          | (1.5)                       | (5.0)                                | (11.0)                     | (5.9)                         |                    |                               |                                                 |                                            |
| 9a                              | $6.95^{i}$                          | 6.15 <sup>e</sup>                                              | 6.48 <sup>e</sup>           | 4.90 <sup>i</sup>                    | 3                          | .60 <sup>c</sup>              | 8.16               | 8.17                          | 7.25                                            | 5.05 <sup>g</sup> (OH5')                   |
|                                 |                                     |                                                                |                             |                                      | (4                         | 4.0)                          |                    |                               |                                                 |                                            |
| 9b<br>11a <sup>j</sup>          | 6.80 <sup>i</sup>                   | 6.10                                                           | 6 4 4                       | 4 86 <sup>i</sup>                    | 3 541                      |                               |                    | 7.89                          | 6.50                                            | 3.96 (OMe)                                 |
|                                 | 0100                                | (6.0)                                                          | (17)                        | 100                                  |                            |                               |                    |                               | 0100                                            | 5 12g (OH5')                               |
|                                 | 6 38                                | 6.21                                                           | 5.87                        | 1 12-1 18 <sup>i</sup>               | 2 99_1 06 <i>i</i>         |                               | 8.04               | 8 33                          | 7.40                                            | 3 32 3 11 (Ms)                             |
|                                 | (4.5)                               | (5.2)                                                          | (5.0)                       | 1.12 1.10                            | 5.00                       | 4.00                          | 0.04               | 0.00                          | 7.40                                            | J.JL, J.HI (1913)                          |
| 11 <b>b</b> <i>i</i>            | (4.3)                               | 5.09                                                           | (3.0)                       | 1 20 1 121                           | 2.07                       | 4.051                         |                    | 0.04                          | 6 17                                            | 9 99 9 41 (M-)                             |
| 110/                            | 0.23                                | 0.90<br>(F 0)                                                  | 3.71                        | 4.39-4.43                            | 3.97                       | -4.03                         |                    | ð.04                          | 0.47                                            | 3.32, 3.41 (IVIS)                          |
| 11-1                            | (5.1)                               | (5.2)                                                          | (4.4)                       | 4.04 4.405                           | 4.00                       | 0.04                          | 7.00               | 0.00                          | 10.01                                           | 3.98 (UME)                                 |
| 11C/                            | 6.36                                | 6.05                                                           | 5.77                        | 4.04-4.46                            | 4.03                       | 3.94                          | 7.92               | 8.30                          | 12.31                                           | 3.33, 3.40 (MS)                            |
|                                 | (4.6)                               | (5.3)                                                          | (5.2)                       | (5.0)                                | (11.8)                     | (4.2)                         |                    |                               |                                                 |                                            |
| 14a                             | 7.00 <sup><i>d</i>,<i>q</i></sup>   | $6.30^{e,r}$                                                   | $6.53^{e}$                  | 5.12 - 5.19                          | 4.                         | .42 <sup>c</sup>              | 8.08               | 8.19                          | 7.32                                            | 3.09 (Ms)                                  |
|                                 | (1.7)                               | (5.9)                                                          | (1.7)                       | (3.9)                                |                            |                               |                    |                               |                                                 |                                            |

<sup>*a*</sup> Chemical shifts ( $\delta$ , 200 MHz, Me<sub>2</sub>SO- $d_6$ ). <sup>*b*</sup> Apparent first-order coupling constants (in parentheses). <sup>*c*</sup> Doublet unless otherwise noted. <sup>*d*</sup> Doublet of doublets unless otherwise noted. <sup>*e*</sup> Doublet of doublets of doublets unless otherwise noted. <sup>*f*</sup> Singlet. <sup>*g*</sup> Broad singlet. <sup>*h*</sup> Peaks for TBDPS at  $\delta$  0.99<sup>*f*</sup> and 7.40–7.85.<sup>*i*</sup> Multiplet. <sup>*j*</sup> Peaks for TBDPS similar to those in footnote *h*. <sup>*k*</sup> Sulfite exo diastereomer. <sup>*l*</sup> Collapsed singlet for H5',5". <sup>*m*</sup> Sulfite endo diastereomer. <sup>*n*</sup> Triplet. <sup>*o*</sup> J<sub>OH5'-CH<sub>2</sub></sub>. <sup>*p*</sup> Collapsed singlet for H3', NH<sub>2</sub>. <sup>*q*</sup> J<sub>1'-3'</sub> = 3.2 Hz. <sup>*r*</sup> J<sub>2'-4'</sub> = 3.8 Hz.

In summary, we have developed mild and efficient procedures (~50% overall yields; 3–5 steps, some combined into one-flask sequences) for conversion of purine ribonucleosides into crystalline, analytically pure 2',3'-didehydro-2',3'-dideoxynucleosides. Cyclic 2',3'-(sulfates or phosphates) or 2',3'-dimesylates undergo reductive elimination upon treatment with sodium naphthalenide (THF/–50 °C) to give the 2',3'-unsaturated products. All reactions proceed at or below ambient temperature with readily available reagents under standard laboratory conditions.

## **Experimental Section**

Uncorrected melting points were determined on a microstage block. UV spectra were determined with solutions in MeOH. NMR spectra (Tables 1 and 2) were determined with solutions in Me<sub>4</sub>Si/Me<sub>2</sub>SO- $d_6$  at 200 MHz (<sup>1</sup>H) or 50 MHz (<sup>13</sup>C). Low-resolution mass spectra were determined at 20 eV. Reagent grade chemicals were used, and solvents and thionyl chloride were distilled before use. Thionyl fluoride was

prepared as described<sup>21</sup> (0.4 M NaF and 0.1 M SOCl<sub>2</sub> in MeCN) and distilled at -20 °C into the reaction flask. Pyridine and MeCN were dried by reflux over and distillation from CaH<sub>2</sub>. THF was refluxed over and distilled first from LiAlH<sub>4</sub> and then from potassium benzophenone ketyl. Sodium naphthalenide was prepared as a 0.5 M stock solution from sodium and naphthalene in dried THF under argon with ultrasound irradiation.<sup>35</sup> TLC was performed with Merck Kieselgel sheets with visualization under 254 nm light: S1 [CHCl3/MeOH (4: 1)] or S<sub>2</sub> [EtOAc/*i*-PrOH/H<sub>2</sub>O (4:1:2, upper layer)]. Merck Kieselgel 60 (230–400 mesh) or Dowex  $1 \times 2$  (OH<sup>-</sup>) resin was used for column chromatography. "Diffusion crystallization" was performed with the noted solvent combinations as described. ^36 Solid products were dried in vacuo over  $P_4O_{10}\ at$ elevated temperatures. The composition of crystalline analytical samples containing solvent was verified by integration of EtOAc <sup>1</sup>H NMR peaks. Procedures A-D are illustrated with

<sup>(35)</sup> Azuma, T.; Yanagida, S.; Sakurai, H. Synth. Commun. 1982, 12, 137.

<sup>(36)</sup> Robins, M. J.; Mengel, R.; Jones, R. A.; Fouron, Y. J. Am. Chem. Soc. 1976, 98, 8204.

| Table 2.     "SC NMR Spectral Data"."           |        |        |        |        |        |       |        |                    |                    |       |  |  |
|-------------------------------------------------|--------|--------|--------|--------|--------|-------|--------|--------------------|--------------------|-------|--|--|
| compound                                        | C2     | C4     | C5     | C6     | C8     | C1′   | C2′    | C3′                | C4′                | C5′   |  |  |
| <b>2b</b> <sup>c,d</sup>                        | 160.19 | 154.46 | 114.17 | 160.93 | 137.62 | 86.72 | 84.38  | 73.58              | 70.19              | 64.29 |  |  |
| <b>3a</b> <sup>e,f</sup>                        | 153.05 | 148.99 | 119.32 | 156.46 | 140.13 | 87.42 | 86.22  | 84.82 <sup>g</sup> | 84.82 <sup>g</sup> | 63.30 |  |  |
| $\mathbf{3b}^{e,f,h}$                           | 160.13 | 153.35 | 114.12 | 161.12 | 138.78 | 87.02 | 86.73  | 86.04              | 85.19              | 63.98 |  |  |
| <b>4a</b> <sup><i>f,i,j</i></sup>               | 153.16 | 149.14 | 119.26 | 156.46 | 139.92 | 87.63 | 86.06  | 84.82              | 82.14              | 63.26 |  |  |
| <b>4a</b> <sup><i>i</i>,<i>k</i>,<i>l</i></sup> | 153.16 | 148.96 | 119.26 | 156.46 | 140.04 | 89.42 | 89.40  | 87.44              | 84.23              | 63.64 |  |  |
| <b>4b</b> <sup><i>f</i>,<i>h</i>,<i>k</i></sup> | 160.17 | 153.40 | 114.24 | 161.16 | 138.78 | 87.17 | 86.68  | 85.09              | 83.10              | 63.54 |  |  |
| $5\mathbf{a}^e$                                 | 153.02 | 148.76 | 119.23 | 156.47 | 140.17 | 87.04 | 85.75  | 84.24              | 84.02              | 63.05 |  |  |
| 5 <b>b</b> <sup>e,h</sup>                       | 160.10 | 152.98 | 114.08 | 161.15 | 138.69 | 86.75 | 86.67  | 85.52              | 84.61              | 63.81 |  |  |
| $\mathbf{6a}^k$                                 | 153.10 | 148.91 | 119.18 | 157.14 | 140.02 | 87.22 | 85.56  | 84.59              | 81.75              | 62.97 |  |  |
| <b>6b</b> <sup><i>h</i>,<i>k</i></sup>          | 160.18 | 153.08 | 113.99 | 161.20 | 138.66 | 86.72 | 84.37  | 82.72              | 79.43              | 63.36 |  |  |
| 7a <sup>f,i</sup>                               | 153.08 | 149.15 | 119.23 | 156.46 | 139.85 | 88.08 | 85.97  | 85.43              | 84.99              | 61.17 |  |  |
| $7\mathbf{a}^{i,l}$                             | 153.08 | 149.15 | 119.23 | 156.48 | 139.85 | 89.38 | 89.30  | 88.30              | 87.27              | 61.43 |  |  |
| <b>7b</b> <sup><i>f</i>,<i>h</i></sup>          | 160.20 | 153.08 | 113.99 | 161.18 | 138.53 | 87.24 | 86.34  | $85.56^{g}$        | $85.56^{g}$        | 61.32 |  |  |
| <b>8b</b> <sup>e,h</sup>                        | 160.26 | 154.15 | 115.68 | 160.96 | 137.25 | 87.56 | 126.09 | 134.01             | 84.61              | 66.29 |  |  |
| <b>8c</b> <sup>e</sup>                          | 146.13 | 148.29 | 125.82 | 156.88 | 138.35 | 88.51 | 124.63 | 134.12             | 87.99              | 66.11 |  |  |
| <b>9b</b> <sup>h</sup>                          | 160.05 | 153.95 | 113.96 | 160.96 | 138.09 | 88.05 | 128.59 | 134.64             | 87.68              | 62.94 |  |  |
| 11a <sup>e,1</sup>                              | 152.92 | 149.25 | 119.52 | 156.40 | 140.28 | 85.80 | 81.96  | 76.74              | 74.93              | 62.18 |  |  |
| 11b <sup>e,h,m</sup>                            | 160.24 | 154.02 | 114.16 | 161.16 | 137.76 | 84.43 | 82.05  | 76.68              | 75.52              | 62.53 |  |  |
| 11c <sup>e,m</sup>                              | 146.36 | 148.11 | 125.16 | 156.64 | 139.54 | 85.83 | 82.15  | 77.00              | 74.69              | 62.23 |  |  |
| <b>14a</b> <sup>n</sup>                         | 153.10 | 149.53 | 119.02 | 156.35 | 139.00 | 88.07 | 127.03 | 132.58             | 84.41              | 70.49 |  |  |

<sup>*a*</sup> Chemical shifts ( $\delta$ , 50 MHz, Me<sub>2</sub>SO-*d*<sub>6</sub>). <sup>*b*</sup> Proton-decoupled singlets. <sup>*c*</sup> Peaks for TBDPS at  $\delta$  135.38, 135.29, 133.06, 132.89, 130.16, 128.16, 26.93, 19.07. <sup>*d*</sup> Peak for OMe at  $\delta$  53.46. <sup>*e*</sup> Peaks for TBDPS similar to those in footnote *c*. <sup>*f*</sup> Sulfite exo diastereomer. <sup>*g*</sup> Peaks not resolved. <sup>*h*</sup> Peak for OMe similar to that in footnote *d* ( $\delta$  53.45–53.96). <sup>*i*</sup> Assignments from a spectrum of the diastereomeric mixture. <sup>*j*</sup> Peaks also at  $\delta$  170.24, 20.67 (Ac). <sup>*k*</sup> Peaks for Ac similar to those in footnote *j*. <sup>*l*</sup> Sulfite endo diastereomer. <sup>*m*</sup> Peaks for Ms at  $\delta$  38.23–38.30. <sup>*n*</sup> Peak for Ms at  $\delta$  36.84

specific examples but are general (with indicated modifications for individual cases).

**5'**-*O*-(*tert*-**Butyldiphenylsilyl)adenosine (2a).** TBDPSCl (0.28 mL, 0.302 g, 1.1 mmol) was added to a suspension of adenosine (**1a**; 0.267 g, 1 mmol) in dried pyridine and was stirred for 24 h at ambient temperature. Volatiles were evaporated in vacuo, and toluene was added and evaporated ( $3 \times 10$  mL). The residue was partitioned (EtOAc/H<sub>2</sub>O), and the organic phase was washed (H<sub>2</sub>O, brine), dried (Na<sub>2</sub>SO<sub>4</sub>), and filtered. Volatiles were evaporated, and the residue was triturated with Et<sub>2</sub>O to give the known<sup>37</sup> **2a** (0.404 g, 80%) as a white solid (mp 185–186 °C): MS *m*/*z* 505 (8, M<sup>+</sup>), 448 (100, M – 57), 136 (90, BH<sub>2</sub>).

**2-Amino-9-[5-***O*-(*tert*-butyldiphenylsilyl)-β-D-ribofuranosyl]-6-methoxypurine (**2b**). Silylation of  $1b^{23a}$  (0.53 g, 1.78 mmol) as described for **2a** and column chromatography of the product (2% MeOH/CHCl<sub>3</sub>) gave **2b** (0.65 g, 68%) as a colorless solid (mp 185–187 °C, softening at 110 °C): UV max 251, 282 nm ( $\epsilon$  10 000, 9000), min 233, 262 nm ( $\epsilon$  5800, 5300); MS *m*/*z* 535 (2, M<sup>+</sup>), 478 (100, M – 57), 199 (60). Anal. Calcd for C<sub>27</sub>H<sub>33</sub>N<sub>5</sub>O<sub>5</sub>Si: C, 60.54; H, 6.21; N, 13.07. Found: C, 60.31; H, 6.37; N, 12.89.

5'-O-(tert-Butyldiphenylsilyl)-2',3'-O-sulfinyladenosine (3a). SOCl<sub>2</sub> (0.33 mL, 0.535 g, 4.5 mmol) was added to a cooled (ice/H<sub>2</sub>O) suspension of 2a (0.757 g, 1.5 mmol) in MeCN (15 mL) and was stirred for 2 h at ambient temperature. The reaction mixture was cooled (ice/H<sub>2</sub>O), H<sub>2</sub>O (10 mL) was added, and the solution was neutralized to pH 5-6 (solid NaHCO<sub>3</sub>) and extracted (EtOAc,  $3 \times 20$  mL). The combined organic phase was washed [cold NaHCO<sub>3</sub>/H<sub>2</sub>O (20 mL), H<sub>2</sub>O (20 mL), and brine (20 mL)] and dried ( $Na_2SO_4$ ). The white solid that precipitated during flash evaporation was filtered and dried to give 3a (0.553 g, 67%). Volatiles were evaporated from the mother liquor, and the residue was recrystallized (EtOAc/hexanes) to give 3a (91 mg, 11%, total yield 78%, exo/ endo >15:1, mp 178−181 °C): UV max 259 nm (*ϵ* 14 600), min 234 nm ( $\epsilon$  3900); MS m/z 494 (100, M - 57), 135 (40, BH). Anal. Calcd for C<sub>26</sub>H<sub>29</sub>N<sub>5</sub>O<sub>5</sub>SSi: C, 56.60; H, 5.30; N, 12.69. Found: C, 56.45; H, 5.46; N, 12.57.

**2-Amino-9-[5-***O*-(*tert***butyldiphenylsilyl)**-2,3-*O*-sulfinyl- $\beta$ -**D**-**ribofuranosyl]-6-methoxypurine (3b).** Treatment of **2b** (0.26 g, 0.49 mmol) with SOCl<sub>2</sub> (as described for **3a**) gave crude **3b** (0.26 g, 92%, exo/endo >15:1). Diffusion crystallization (EtOAc/hexane) gave white crystals (mp 190–191 °C): UV max 250, 282 nm ( $\epsilon$  10 600, 9000), min 233, 263 nm ( $\epsilon$  6000, 6000); MS *m*/*z* 581 (8, M<sup>+</sup>), 524 (62, M – 57), 199 (100). Anal. Calcd for C<sub>27</sub>H<sub>31</sub>N<sub>5</sub>O<sub>6</sub>SSi: C, 55.75; H, 5.37; N, 12.04. Found: C, 55.68; H, 5.20; N, 11.95.

**5'**-*O*-Acetyl-2',3'-*O*-sulfinyladenosine (4a). Ac<sub>2</sub>O (0.07 mL, 0.061 g, 0.6 mmol) was added to a solution of **7a** (0.156 g, 0.5 mmol) in pyridine (5 mL) at ~0 °C (ice/H<sub>2</sub>O) and was stirred for 6 h at ~0 °C, and MeOH (5 mL) was added. Stirring was continued for 30 min, volatiles were evaporated in vacuo, and toluene was added and evaporated (3 × 5 mL). The white residue was dissolved (EtOAc, 20 mL), the solution was washed [cold NaHCO<sub>3</sub>/H<sub>2</sub>O (10 mL), H<sub>2</sub>O (10 mL), and brine (10 mL)] and dried (Na<sub>2</sub>SO<sub>4</sub>), and volatiles were evaporated to give a white solid. Recrystallization (MeCN/hexanes) gave **4a** (0.143 g, 81%, exo/endo ~2:1, mp 184–185 °C): UV max 258 nm ( $\epsilon$  14 100), min 226 nm ( $\epsilon$  1900); MS *m*/*z* 355 (100, M<sup>+</sup>), 136 (40, BH<sub>2</sub>), 135 (40, BH). Anal. Calcd for C<sub>12</sub>H<sub>13</sub>N<sub>5</sub>O<sub>6</sub>S: C, 40.56; H, 3.69; N, 19.71. Found: C, 40.64; H, 4.00; N, 19.59.

**9-(5-***O***-Acetyl-2,3-***O***-sulfinyl-***β***-D-ribofuranosyl)-2-amino-6-methoxypurine (4b).** Acetylation of **7b** (0.21 g, 0.61 mmol, as described for **4a**) gave **4b** (0.224 g, 95%, exo/endo ~2:1) as a white solid. A sample was diffusion crystallized (EtOAc/ hexanes) to give **4b** (mp 97–99 °C): UV max 250, 282 nm ( $\epsilon$ 10 700, 9200), min 225, 264 nm ( $\epsilon$  3000, 5200); MS *m*/*z* 385 (80, M<sup>+</sup>), 165 (100, BH). Anal. Calcd for C<sub>13</sub>H<sub>15</sub>N<sub>5</sub>O<sub>7</sub>S: C, 40.52; H, 3.92; N, 18.17. Found: C, 40.33; H, 3.72; N, 18.11.

Procedure A. 5'-O-(tert-Butyldiphenylsilyl)-2',3'-O-sulfonyladenosine (5a). NaIO<sub>4</sub> (0.160 g, 1.5 mmol), RuCl<sub>3</sub>·3H<sub>2</sub>O (~1 mg, ~0.004 mmol), and then  $H_2O$  (1.0 mL) were added to a solution of 3a (0.276 g, 0.5 mmol) in MeCN (7 mL) under N2 at  $\sim$ 0 °C (ice/H<sub>2</sub>O) and was stirred for 10 min at 0 °C and then 1 h at ambient temperature. EtOAc (20 mL) and brine (10 mL) were added, and the aqueous layer was extracted with EtOAc (2  $\times$  10 mL). The combined organic phase was washed [H<sub>2</sub>O (15 mL), NaHCO<sub>3</sub>/H<sub>2</sub>O (15 mL), and brine ( $2 \times 15$  mL)], dried (Na<sub>2</sub>SO<sub>4</sub>), and filtered with a Celite pad (to remove green ruthenium species). The filtrate was evaporated in vacuo to give gray crystalline 5a (0.255 g, 90%) of sufficient purity for the reductive elimination step. A sample was flash chromatographed (2% MeOH/EtOAc) and recrystallized (EtOAc/hexanes) to give **5a** (mp  $\sim$ 260 °C dec): UV max 259 nm ( $\epsilon$  14 900), min 234 nm ( $\epsilon$  4200); MS m/z 567 (90, M<sup>+</sup>), 136 (100, BH<sub>2</sub>). Anal. Calcd for C<sub>26</sub>H<sub>29</sub>N<sub>5</sub>O<sub>6</sub>SSi: C, 55.01; H, 5.15; N, 12.34. Found: C, 54.86; H, 5.42; N, 12.09.

<sup>(37)</sup> Beaton, G.; Jones, A. S.; Walker, R. T. Tetrahedron 1988, 44, 6419.

An analogous oxidation of **3a** (0.057 g, 0.1 mmol) with Oxone (0.20 g, 0.325 mmol) replacing NaIO<sub>4</sub> gave colorless crystalline **5a** (0.035 g, 60%).

**2-Amino-9-[5-***O*-(*tert*-butyldiphenylsilyl)-2,3-*O*-sulfonyl*β*-**D**-ribofuranosyl]-6-methoxypurine (5b). Oxidation of **3b** (0.30 g, 0.52 mmol) by procedure A gave **5b** (0.265 g, 86%) as a gray solid. Chromatography and crystallization (procedure A) gave **5b** (mp 95–97 °C): UV max 249, 282 nm ( $\epsilon$  10 700, 9100), min 230, 263 nm ( $\epsilon$  3700, 5500); MS *m*/*z* 597 (20, M<sup>+</sup>), 540 (100, M – 57). Anal. Calcd for C<sub>27</sub>H<sub>31</sub>N<sub>5</sub>O<sub>7</sub>SSi: C, 54.26; H, 5.23; N, 11.72. Found: C, 54.36; H, 5.46; N, 11.49.

**5'**-*O*-Acetyl-2',3'-*O*-sulfonyladenosine (6a). Oxidation of **4a** (0.355 g, 1 mmol) by procedure A gave **6a** (0.308 g, 83%) as gray crystals. Chromatography (procedure A) and crystallization (EtOAc) gave **6a** (mp 208–210 °C dec): UV max 258 nm ( $\epsilon$  15 000), min 225 nm ( $\epsilon$  1800); MS *m*/*z* 371 (10, M<sup>+</sup>), 164 (100), 135 (24, BH). Anal. Calcd for C<sub>12</sub>H<sub>13</sub>N<sub>5</sub>O<sub>7</sub>S·0.3EtOAc: C, 39.96; H, 3.66; N, 17.65. Found: C, 40.14; H, 4.02; N, 17.32.

**9-(5-***O***-Acetyl-2,3-***O***-sulfonyl-** $\beta$ **-D-ribofuranosyl)-2-amino-6-methoxypurine (6b).** Oxidation of **4b** (0.32 g, 0.83 mmol) by procedure A gave **6b** (0.30 g, 90%) as a gray solid. Chromatography and crystallization (procedure A) gave **6b** (mp 148–150 °C): UV max 249, 282 nm ( $\epsilon$  10 700, 9000), min 225, 264 nm ( $\epsilon$  3000, 5400); MS m/z 401 (50, M<sup>+</sup>), 165 (44, BH), 83 (100). Anal. Calcd for C<sub>13</sub>H<sub>15</sub>N<sub>5</sub>O<sub>8</sub>S: C, 38.90; H, 3.77; N, 17.45. Found: C, 39.12; H, 3.87; N, 17.18.

2',3'-O-Sulfinyladenosine (7a). SOF<sub>2</sub><sup>21</sup> was distilled (-20 °C) into a low-pressure jar cooled at -70 °C. Cold (-20 °C) MeCN (20 mL) and adenosine (1a; 0.267 g, 1 mmol) were added slowly, the jar was sealed, and the contents were stirred for 24 h at ambient temperature. The mixture was cooled (ice/ H<sub>2</sub>O), H<sub>2</sub>O (10 mL) was added, and the solution was concentrated (~10 mL) in vacuo. EtOAc (30 mL) was added with cooling (ice/H<sub>2</sub>O), and the solution was neutralized (to pH 5.0-5.5, solid NaHCO<sub>3</sub>). The organic layer was separated, and the aqueous phase was extracted (EtOAc,  $3 \times 20$  mL). The combined organic phase was washed [cold NaHCO<sub>3</sub>/H<sub>2</sub>O (20 mL), H<sub>2</sub>O (20 mL), and brine (20 mL)] and dried (Na<sub>2</sub>SO<sub>4</sub>), and volatiles were evaporated to give 7a (0.225 g, 72%, exo/ endo  $\sim$ 2:1) as a white solid. A sample was recrystallized (EtOAc/hexanes) to give 7a (mp 198-200 °C dec): UV max 259 nm ( $\epsilon$  14 300), min 226 nm ( $\epsilon$  1900); MS *m*/*z* 313 (40, M<sup>+</sup>), 164 (100), 135 (90, BH). Anal. Calcd for C<sub>10</sub>H<sub>11</sub>N<sub>5</sub>O<sub>5</sub>S: C, 38.34; H, 3.54; N, 22.35. Found: C, 38.12; H, 3.74; N, 22.13.

**2-Amino-6-methoxy-9-(2,3-***O***-sulfinyl**-*β***-D-ribofuranosyl)purine (7b).** Treatment of  $1b^{23a}$  (0.295 g, 1 mmol) with SOF<sub>2</sub> as described for **7a** [with addition of pyridine (0.16 mL, 2 mmol) to the reaction mixture] gave **7b** (0.314 g, 92%, exo/ endo ~2:1). A sample was diffusion crystallized (EtOAc/ hexanes) to give **7b** (mp 188–189 °C): UV max 250, 282 nm ( $\epsilon$  10 200, 9000), min 225, 263 nm ( $\epsilon$  3400, 5000); MS *m*/*z* 343 (80, M<sup>+</sup>), 165 (100, BH). Anal. Calcd for C<sub>11</sub>H<sub>13</sub>N<sub>5</sub>O<sub>6</sub>S: C, 38.48; H, 3.82; N, 20.40. Found: C, 38.26; H, 3.93; N, 20.16.

Procedure B. 9-[5-O-(tert-Butyldiphenylsilyl)-2,3-dideoxy-β-D-glycero-pent-2-enofuranosyl]adenine (8a). Sodium naphthalenide<sup>35</sup> in dried THF (0.5 M) was added slowly (double-ended cannula) to a stirred solution of 5a (0.120 g, 0.21 mmol) in dried, deoxygenated (Ar, 30 min) THF (8 mL) at -50°C (under Ar) until the green color of the radical anion persisted [TLC (S<sub>2</sub>) after 5 min indicated complete conversion of 5a to a more polar product]. Saturated NH<sub>4</sub>Cl/H<sub>2</sub>O was added (pH 5.5-6.5), volatiles were evaporated in vacuo, and EtOAc (20 mL) and H<sub>2</sub>O (10 mL) were added. The aqueous phase was extracted [EtOAc (15 mL)], and the combined organic phase was dried (Na<sub>2</sub>SO<sub>4</sub>). Volatiles were evaporated, and the residue was chromatographed (1% MeOH/CHCl<sub>3</sub>) to give colorless 8a (0.058 g, 59%, mp 154–156 °C, lit.<sup>9</sup> mp 155– 157 °C): UV max 260 nm; MS m/z 471 (2, M<sup>+</sup>), 414 (100, M – 57)

2-Amino-9-[5-*O*-(*tert*-butyldiphenylsilyl)-2,3-dideoxy- $\beta$ -D-glycero-pent-2-enofuranosyl]-6-methoxypurine (8b). Treatment of 5b (0.13 g, 0.22 mmol) by procedure B gave solid 8b (46 mg, 42%). A sample was purified [RP-HPLC: C<sub>18</sub> column, H<sub>2</sub>O/MeCN (70:30  $\rightarrow$  0:100), 120 min ( $t_{\rm R}$  110 min)] to give 8b (mp 75–80 °C): UV max 249, 281 nm ( $\epsilon$  11 100, **9-[5-***O*-(*tert*-Butyldiphenylsilyl)-2,3-dideoxy-β-D-*glycero*pent-2-enofuranosyl]hypoxanthine (8c). Treatment of 11c (0.13 g, 0.17 mmol) by procedure B and crystallization (EtOAc) gave 8c (29 mg). Chromatography of the mother liquor (1% MeOH/EtOAc) and crystallization (EtOAc) gave additional 8c (48 mg, 79% total, mp 89–91 °C): UV max 250 nm ( $\epsilon$  14 900), min 233 nm ( $\epsilon$  6500); MS *m*/*z* 415 (10, M – 57), 136 (100, BH). Anal. Calcd for C<sub>26</sub>H<sub>28</sub>N<sub>4</sub>O<sub>3</sub>Si·0.5EtOAc: C, 65.09; H, 6.24; N, 10.84. Found: C, 64.91; H, 6.55; N, 10.84.

Parallel treatment of the crude mesylate mixture (**11**c/ trimesylate  $\sim$ 3:1, 0.136 g,  $\sim$ 0.20 mmol) gave colorless crystalline **8c** (78 mg, 76%) with identical physical and spectral properties.

**Procedure C.** 9-(2,3-Dideoxy-β-D-glycero-pent-2-enofuranosyl)adenine (9a). Method A. TBAF/THF (1 M, 0.32 mL, 0.32 mmol) was added to a solution of **8a** (0.15 g, 0.318 mmol) in THF (5 mL) and was stirred for 2 h at ambient temperature. Volatiles were evaporated, and the residue was dissolved (H<sub>2</sub>O) and chromatographed [Dowex 1 × 2 (OH<sup>-</sup>), H<sub>2</sub>O] to give colorless crystalline **9a** (0.068 g, 92%, mp 194–195 °C, lit.<sup>9</sup> mp 188–190 °C): UV max 259 nm ( $\epsilon$  13 200), min 226 nm ( $\epsilon$  1900); MS *m*/*z* 233 (10, M<sup>+</sup>), 135 (100, BH).

Treatment of  $\pmb{8a}$  (0.12 g, 0.254 mmol) with NH<sub>4</sub>F (0.10 g, 2.7 mmol) in MeOH (10 mL) for 5 h at 60 °C gave  $\pmb{9a}$  (0.052 g, 88%) after purification [Dowex 1  $\times$  2 (OH<sup>-</sup>), H<sub>2</sub>O].

**Method B.** Treatment of **6a** (0.185 g, 0.5 mmol) by procedure B (to the point of evaporation of volatiles) gave a more polar product [TLC (S<sub>1</sub>)]. Et<sub>2</sub>O (20 mL) and H<sub>2</sub>O (10 mL) were added, and the organic layer was extracted (H<sub>2</sub>O, 5 mL). The combined aqueous phase was concentrated and chromatographed [Dowex  $1 \times 2$  (OH<sup>-</sup>), H<sub>2</sub>O]. The white solid was diffusion crystallized (MeOH/Et<sub>2</sub>O) to give **9a** (0.056 g, 48%).

Method C. NaH (0.06 g, 1.25 mmol, 50% dispersion in mineral oil) was washed (dried THF,  $3 \times 5$  mL) and suspended in dried THF (10 mL) under argon. A solution of 2a (0.2 g, 0.4 mmol) in dried THF (10 mL) was added and was stirred at ambient temperature until evolution of H<sub>2</sub> ceased. A solution of ethyl dichlorophosphate (0.048 mL, 0.065 g, 0.4 mmol) in dried THF (5 mL) was added dropwise, and after 1 h, TLC (S1) indicated conversion of almost all starting material to a less polar product. The reaction mixture was cooled (-50)°C) and subjected to procedure B, and a more polar product was formed [TLC (S<sub>1</sub>)]. Saturated NH<sub>4</sub>Cl/H<sub>2</sub>O was added, volatiles were evaporated in vacuo, and EtOAc (20 mL) and H<sub>2</sub>O (10 mL) were added. The aqueous layer was extracted (EtOAc, 10 mL), and the combined organic phase was dried (Na<sub>2</sub>SO<sub>4</sub>). Volatiles were evaporated, and the residue was dissolved (THF, 10 mL). The mixture was deprotected and chromatographed (procedure C) to give colorless crystalline 9a (0.025 g, 27%). Further elution of the Dowex 1  $\times$  2 (OH<sup>-</sup>) column with MeOH gave 1a (0.013 g, 12%).

**Method D.** Treatment of **11a** (0.13 g, 0.20 mmol) by procedure B (-50 °C,  $\sim 10$  min) and crude **8a** by procedure C [aqueous layer washed (Et<sub>2</sub>O) before purification on the Dowex column)] gave **9a** (0.036 g, 79%, mp 194–195 °C): UV max 259 nm ( $\epsilon$  13 400), min 226 nm ( $\epsilon$  2000).

**Method E.** Treatment of 5'-*O*-tosyladenosine<sup>34</sup> (0.505 g, 1.2 mmol) by procedure D [back-extraction of the combined aqueous layers (CHCl<sub>3</sub>, 3×), no column chromatography] and crystallization (MeOH) gave **13a** (415 mg, 60%, mp 163–166 °C dec): <sup>1</sup>H NMR  $\delta$  2.36 (s, 3, Me), 3.30, 3.40 (2 × s, 2 × 3, 2 × Ms), 4.46–4.59 (m, 3, H4',5',5''), 5.72 (dd,  $J_{3'-4'} = 4.0$  Hz,  $J_{3'-2'} = 5.3$  Hz, 1, H3'), 6.10 (t, J = 5.1 Hz, 1, H2'), 6.29 (d,  $J_{1'-2'} = 4.9$  Hz, 1, H1'), 7.31 (d, J = 8.0 Hz, 2, arom), 7.45 (br s, 2, NH<sub>2</sub>), 7.68 (d, J = 8.0 Hz, 2, arom), 8.05 (s, 1, H2), 8.26 (s, 1, H8); HRMS (CI) *m*/*z* 578.0693 (60, MH<sup>+</sup> [C<sub>19</sub>H<sub>24</sub>N<sub>5</sub>O<sub>10</sub>S<sub>3</sub>] = 578.0685). Treatment of **13a** (0.072 g, 0.125 mmol) by procedure B (as modified in method B) gave **9a** (0.016 g, 55%).

**2-Amino-9-(2,3-dideoxy**- $\beta$ -D-glycero-pent-2-enofuranosyl)-6-methoxypurine (9b). Method A. Treatment of 6b (0.12 g, 0.3 mmol) by procedure B and workup [as described for 9a (method B)] gave 9b (0.048 g, 61%) as a white solid (mp 108–109 °C): UV max 247, 282 nm ( $\epsilon$  9700, 9100), min 225, 262 nm ( $\epsilon$  3800, 4600); MS *m*/*z* 263 (18, M<sup>+</sup>), 165 (100, BH). Anal. Calcd for C<sub>11</sub>H<sub>13</sub>N<sub>5</sub>O<sub>3</sub>: C, 50.19; H, 4.98; N, 26.60. Found: C, 49.96; H, 5.19; N, 26.69.

**Method B.** Deprotection of **8b** (0.11 g, 0.22 mmol) by procedure C gave **9b** (0.048 g, 86%) with identical physical and spectral properties.

**Method C.** Treatment of **11b** (0.14 g, 0.20 mmol) by procedure B and deprotection of the crude **8b** by procedure C gave **9b** (0.038 g, 72%) with identical physical and spectral properties.

**9-(2,3-Dideoxy-\beta-D-glycero-pent-2-enofuranosyl)hypoxanthine (9c). Method A.** Treatment of **11c** (0.12 g, 0.157 mmol) by procedure B and then **8c** by procedure C [chromatography (3  $\rightarrow$  7% MeOH/CHCl<sub>3</sub>) and recrystallization (MeOH)] gave **9c** (0.028 g, 76%, mp >300 °C, lit.<sup>8</sup> mp >310 °C): UV max 249 nm ( $\epsilon$  14 000), min 221 nm ( $\epsilon$  3400).

**Method B.** Deprotection of **8c** (0.14 g, 0.296 mmol) by procedure C [silica gel column chromatography  $(3 \rightarrow 7\% \text{ MeOH/CHCl}_3)$ ] gave **9c** (0.065 g, 94%).

**Procedure D.** 5'-O-(*tert*-Butyldiphenylsilyl)-2',3'-di-Omethanesulfonyladenosine (11a). MeSO<sub>2</sub>Cl (0.12 mL, 0.18 g, 1.6 mmol) in dried pyridine (12 mL) was added dropwise to a cooled (ice/H<sub>2</sub>O) solution of **2a** (0.3 g, 0.59 mmol) in dried pyridine (15 mL) and was stirred for 5 h [starting material was converted into a less polar product, TLC (S<sub>1</sub>)]. Volatiles were evaporated, toluene was added and evaporated (2 × 5 mL), and the residue was dissolved (CHCl<sub>3</sub>, 30 mL). The solution was washed [NaHCO<sub>3</sub>/H<sub>2</sub>O (2 × 15 mL), H<sub>2</sub>O (10 mL), and brine (10 mL)] and dried (Na<sub>2</sub>SO<sub>4</sub>), volatiles were evaporated, and the residue was chromatographed (2% MeOH/ CHCl<sub>3</sub>) to give colorless crystalline **11a** (0.33 g, 84%, mp 153 – 155 °C): UV max 258 nm ( $\epsilon$  14 800), min 234 nm ( $\epsilon$  4100); MS m/z 604 (100, M – 57), 135 (20, BH). Anal. Calcd for C<sub>28</sub>H<sub>35</sub>N<sub>5</sub>O<sub>8</sub>S<sub>2</sub>Si: C, 50.81; H, 5.33; N, 10.58. Found: C, 50.89; H, 5.37; N, 10.44.

2-Amino-9-[5-*O*-(*tert*-butyldiphenylsilyl)-2,3-di-*O*-methanesulfonyl- $\beta$ -D-ribofuranosyl]-6-methoxypurine (11b). Treatment of 2b (0.13 g, 0.243 mmol) by procedure D and chromatography (1% MeOH/CHCl<sub>3</sub>) gave 11b (0.128 g, 76% mp 85–87 °C): UV max 251, 281 nm ( $\epsilon$  11 600, 8800), min 233, 267 nm ( $\epsilon$  6400, 6900); MS m/z 634 (20, M – 57), 166 (100, BH). Anal. Calcd for C<sub>29</sub>H<sub>37</sub>N<sub>5</sub>O<sub>9</sub>S<sub>2</sub>Si: C, 50.35; H, 5.39; N, 10.12. Found: C, 50.41; H, 5.46; N, 10.01.

**5'**-*O*-(*tert*-Butyldiphenylsilyl)-2',3'-di-*O*-methanesulfonylinosine (11c). Treatment of **2c**<sup>37</sup> [0.25 g, 0.494 mmol; prepared from inosine (61%) as described for **2a**] by procedure D gave **11c** and its 6-*O*-mesyl derivative (~3:1, 0.32 g, ~96%). Chromatography (1% MeOH/CHCl<sub>3</sub>) gave the 6-*O*-mesyl byproduct (0.08 g, 22%): <sup>1</sup>H NMR  $\delta$  0.94 (s, 9, *t*-Bu), 3.35, 3.36, 3.85 (3 × s, 3 × 3, 3 × Ms), 3.89–4.01 (m, 2, H5',5''), 4.80–4.98 (m, 1, H4'), 5.74 (dd,  $J_{3'-4'} = 5.3$  Hz,  $J_{3'-2'} = 5.4$  Hz, 1, H3'), 5.98 (dd,  $J_{2'-1'} = 4.6$  Hz, 1, H2'), 6.43 (d, 1, H1'), 7.32–7.74 (m, 10, arom), 8.49 (s, 1, H8), 8.52 (s, 1, H2). This was followed by **11c** (0.22 g, 67%, mp 110–115 °C): UV max 250 nm ( $\epsilon$  14 000), min 232 nm ( $\epsilon$  8300); MS *m*/*z* 605 (10, M – 57), 136 (100, BH). Anal. Calcd for C<sub>28</sub>H<sub>34</sub>N<sub>4</sub>O<sub>9</sub>S<sub>2</sub>Si: C, 50.74; H, 5.17; N, 8.45. Found: C, 50.90; H, 5.13; N, 8.25.

**2**',**3**',**5**'-**Tri**-*O*-**methanesulfonyladenosine (12a).** Treatment of **1a** (1.34 g, 5 mmol) with MeSO<sub>2</sub>Cl as reported<sup>33</sup> gave **12a** (88%, mp 184–186 °C dec, lit.<sup>33</sup> 185–195 dec): UV max 260 nm ( $\epsilon$  13 800); <sup>1</sup>H NMR  $\delta$  3.15, 3.33, 3.47 (3 × s, 3 × 3, 3 × Ms), 4.65 (br s, 3, H4',5',5''), 5.70–5.80 (m, 1, H3'), 6.13 (dd,  $J_{2'-3'} = 5.5$  Hz,  $J_{2'-1'} = 5.4$  Hz, 1, H2'), 6.38 (d, 1, H1'), 7.48 (br s, 2, NH<sub>2</sub>), 8.20 (s, 1, H2), 8.39 (1, H8).

9-(2,3-Dideoxy-5-*O*-methanesulfonyl-β-D-*glycero*-pent-2-enofuranosyl)adenine (14a). Treatment of a solution of 12a (0.1 g, 0.2 mmol) in DMF/THF (1:7, 8 mL) by procedure B and chromatography (3 → 7% MeOH/EtOAc) gave 14a (0.039 g, 63%) as off-white crystals (mp 131–132 °C) UV max 259 nm ( $\epsilon$  15 000), min 226 nm ( $\epsilon$  2000). Anal. Calcd for C<sub>11</sub>H<sub>13</sub>N<sub>5</sub>O<sub>4</sub>S·0.1EtOAc: C, 42.77; H, 4.35; N, 21.88. Found: C, 42.98; H, 4.52; N, 21.55.

**Acknowledgment.** We thank Glaxo Canada and Brigham Young University development funds for support and Mrs. Jeanny Gordon for assistance with the manuscript.

JO981013M